Please wait a minute...
?
气候变化研究进展
? 本期目录 | 过刊浏览 | 高级检索 |
气候变化条件下雅砻江流域未来径流变化趋势研究
董立俊1,2,董晓华1,2,曾强1,2,魏冲1,2,喻丹1,2,薄会娟1,2,郭靖3
1 三峡大学水利与环境学院,宜昌 443002;
2水资源安全保障湖北省协同创新中心,武汉430070;
3中国电建集团华东勘测设计研究院有限公司,杭州 310014
Long-term runoff change trend of Yalong River basin under future climate change scenarios
DONG Li-Jun1,2, DONG Xiao-Hua1,2, ZENG Qiang1,2, WEI Chong1,2, YU Dan1,2, BO Hui-Juan1,2, GUO Jing3
1 College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang 443002, China;
2 Water Resources Security Collaborative Innovation Center in Hubei Province, Wuhan 430070, China;
3 Power China Huadong Engineering Corporation Ltd., Hangzhou 310014, China
下载:? PDF (1074KB)?
输出:? BibTeX | EndNote (RIS) ? ???
摘要?雅砻江为我国重要的水电基地,未来气候变化条件下流域径流变化将直接影响雅砻江梯级水库群运行安全和发电调度,因此研究气候变化对雅砻江流域径流的影响十分必要。首先建立了流域月尺度的SWAT模型,然后使用统计降尺度模型(SDSM)预测未来2006—2100年流域内各站点的气象数据,最后使用流域SWAT模型对未来2006—2100年月径流进行模拟。结果表明,未来雅砻江流域径流呈上升趋势,且增幅随着辐射强迫的增加同步增大,RCP2.6、RCP4.5、 RCP8.5这3种典型浓度路径下年平均径流增幅分别为8.9%、12.5%、16.7%,且2020S(2006—2035年)、2050S(2036—2065年)、2080S(2066—2100年)这3个时期年径流量呈现不同的变化趋势,其中RCP2.6浓度路径下为先逐步增加达到峰值后略有减少,RCP4.5浓度路径下为先逐步增加达到峰值后趋于稳定,RCP8.5浓度路径下为持续增加。流域径流年内分配方面,3种典型浓度路径下汛期径流占全年比例在2020S、2050S、2080S这3个时期均为先降后升趋势,整个预测期总体为降低趋势,3种典型浓度路径下分别由基准期的75.9%降低为72.9%、72.0%、71.2%。径流增加会对流域洪水特性产生较大影响,为此应该修正流域设计洪水计算结果和调整防洪调度方案,以降低雅砻江流域梯级水库群因气候变化而产生的运行风险,并提高发电调度效率。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词:? 气候变化? SWAT模型? 统计降尺度模型(SDSM)? 水文响应? ??
Abstract:?Yalongjiang River basin is an important hydropower base in China. The runoff variation of Yalongjiang River Basin under climate change scenarios in future will directly affect the operation safety and power generation dispatch of cascade reservoirs. Therefore, it is necessary to study the impact of climate change on the runoff of Yalongjiang River Basin. Firstly, the the monthly SWAT model of the watershed is established, then the meteorological data of each station is predicted by using SDSM from 2006 to 2100. Finally, the future runoff of Yalongjiang River Basin is simulated by using the calibrated SWAT model from 2006 to 2100. The results show that the runoff of Yalong River will increase in the future, and increase synchronously with the enhancement of radiation forcing. The annual average runoff growth rates of RCP2.6, RCP4.5 and RCP8.5 are 8.9%, 12.5% and 16.7% respectively, and the annual runoff of 2020S, 2050S and 2080S under three concentration paths shows different trends. Under the RCP2.6 concentration path, it increases gradually to the peak value and then decreases slightly. Under the RCP4.5 concentration path, it increases gradually to the peak value and then stabilizes. While under the RCP8.5 concentration path, it increases continuously. In terms of annual distribution of runoff, the proportion of runoff in flood season under three typical concentration paths decreases first and then increases in the three periods of 2020S, 2050S and 2080S. The overall trend in the whole forecast period is decreasing. Under the three concentration paths, the proportion decreases from 75.9% of the base period to 72.9%, 72.0% and 71.2%, respectively. The increase of runoff will have a greater impact on the flood characteristics of the basin. Therefore, the designed flood in the basin should be revised and flood control dispatching schemes adjusted to reduce the operational risk of cascade reservoirs and to improve the efficiency of power generation dispatching in the Yalong River basin due to climate change.
Key words:? Climate change ?? SWAT model ?? Statistical Downscaling Model (SDSM) ?? Hydrological response
收稿日期:? 2018-12-04 ???? 修回日期:? 2019-02-20 ???? ???? 出版日期:? 2019-08-21 ???? 发布日期:? 2019-08-21 ????
基金资助:?水电工程水文气象重大关键技术应用研究;亚流域尺寸和雨量数据空间分辨率对径流模拟精度的影响
通讯作者:? 董晓华???
引用本文:? ??
董立俊 董晓华 曾强 魏冲 喻丹 薄会娟 郭靖. 气候变化条件下雅砻江流域未来径流变化趋势研究[J]. 气候变化研究进展, .
DONG Li-Jun, DONG Xiao-Hua, ZENG Qiang, WEI Chong, YU Dan, BO Hui-Juan, GUO Jing. Long-term runoff change trend of Yalong River basin under future climate change scenarios. Climate Change Research, 0, (): 0-0.
链接本文: ?
http://www.climatechange.cn/CN/
[1] 杨世莉,董文杰,丑洁明,刘昌新. 对地球系统模式与综合评估模型双向耦合问题的探讨[J]. 气候变化研究进展, 2019, 15(4): 335-342.
[2] 廖要明,陈德亮,刘秋锋. 中国地气温差时空分布及变化趋势[J]. 气候变化研究进展, 2019, 15(4): 374-384.
[3] 秦鹏程,刘敏,杜良敏,许红梅,刘绿柳,肖潺. 气候变化对长江上游径流影响预估[J]. 气候变化研究进展, 2019, 15(4): 405-415.
[4] 高帅,李梦宇,段茂盛,王灿. 《巴黎协定》下的国际碳市场机制:基本形式和前景展望[J]. 气候变化研究进展, 2019, 15(3): 222-231.
[5] 宋臻,史兴民,李欢娟,陈谢扬,高莹. 樱桃种植户对气候变化及气象灾害的适应行为效能感知研究[J]. 气候变化研究进展, 2019, 15(3): 313-325.
[6] 李彩瑛,阎建忠,花晓波,张镱锂. 农户生计对气候变化的敏感性研究综述[J]. 气候变化研究进展, 2019, 15(3): 290-300.
[7] 陈德亮,秦大河,效存德,苏勃. 气候恢复力及其在极端天气气候灾害管理中的应用[J]. 气候变化研究进展, 2019, 15(2): 167-177.
[8] 章梦杰,郭家力,林伟,郭靖,舒章康,李英海,张静文. 气候变化对水文季节性迁移的影响:以水库汛期分期和极值降水为例[J]. 气候变化研究进展, 2019, 15(2): 158-166.
[9] 郭飞燕,綦东菊,周斌,薛允传. 青岛地区气候变化对动物物候变化的影响研究[J]. 气候变化研究进展, 2019, 15(1): 62-73.
[10] 温作龙,姜玖,曹龙. 太阳辐射管理地球工程对海洋酸化影响的模拟研究[J]. 气候变化研究进展, 2019, 15(1): 41-53.
[11] 王利宁, 杨雷, 陈文颖, 单葆国, 张成龙, 尹硕. 国家自主决定贡献的减排力度评价[J]. 气候变化研究进展, 2018, 14(6): 613-620.
[12] 洪祎君, 崔惠娟, 王芳, 葛全胜. 基于发展中国家自主贡献文件的资金需求评估[J]. 气候变化研究进展, 2018, 14(6): 621-631.
[13] 范志欣,方修琦,苏筠. 全球碳排放格网化格局的变化[J]. 气候变化研究进展, 2018, 14(5): 505-512.
[14] 王正,支蓉,封国林,李淑萍. 典型场选取对多要素气候态相似季节划分的影响[J]. 气候变化研究进展, 2018, 14(4): 350-369.
[15] 许光清,董小琦. 企业气候变化意识及应对措施调查研究[J]. 气候变化研究进展, 2018, 14(4): 429-436.
[1] . A New Method to Construct Anomaly Series of Climatic Energy Consumption for Urban Residential Heating in Jilin Province[J]. Climate Change Research, 2008, 04(001): 32 -36 .
[2] . Analysis of Factors Impacting China's CO2 Emissions During 1971-2005[J]. Climate Change Research, 2008, 04(001): 42 -47 .
[3] Cao?Guoliang;Zhang?Xiaoye;?Wang?Yaqiang;et al.. Inventory?of?Black?Carbon?Emission?from?China[J]. Climate Change Research, 2007, 03(00): 75 -81 .
[4] . Dryness/Wetness Changes in Qinghai Province During 1959-2003[J]. Climate Change Research, 2007, 03(06): 356 -361 .
[5] Xu?Xiaobin;Lin?Weili;?Wang?Tao;et al.. Long-term?Trend?of?Tropospheric?Ozone?over?the?Yangtze?Delta?Region?of?China[J]. Climate Change Research, 2007, 03(00): 60 -65 .
[6] Gao?Qingxian;?Du?Wupeng;?Lu?Shiqing;et al.. Methane?Emission?from?Municipal?Solid?Waste?Treatments?in?China[J]. Climate Change Research, 2007, 03(00): 70 -74 .
[7] . Guide to Authors[J]. Climate Change Research, 2006, 02(00): 84 .
[8] . Granger Causality Test for Detection and Attribution of Climate Change[J]. Climate Change Research, 2008, 04(001): 37 -41 .
[9] . AIntra-annual Inhomogeneity Characteristics of Precipitation over Northwest China[J]. Climate Change Research, 2007, 03(05): 276 -281 .
[10] . Projection of Future Precipitation Extremes in the Yangtze River Basin for 2001-2050[J]. Climate Change Research, 2007, 03(06): 340 -344 .
Viewed
Full text


Abstract

Cited

? Shared ??
? Discussed ??
京ICP备10018055-1号
版权所有 ? 《气候变化研究进展》编辑部
地址:北京市海淀区中关村南大街46号 邮编:100081 电话/传真:(010)58995171 E-mail:accr@cma.gov.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn